Pabon-Mora N, Sharma B, Holappa LD, Kramer EM, Litt A.
The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development. Plant J. 2013;74 :197-212.
AbstractThe APETALA1/FRUITFULL (AP1/FUL) MADS box transcription factors are best known for the role of AP1 in Arabidopsis sepal and petal identity, the canonical A function of the ABC model of flower development. However, this gene lineage underwent multiple duplication events during angiosperm evolution, providing different taxa with unique gene complements. One such duplication correlates with the origin of the core eudicots, and produced the euAP1 and euFUL clades. Together, euAP1 and euFUL genes function in proper floral meristem identity and repression of axillary meristem growth. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth and fruit development. To investigate the impact of the core eudicot duplication on the functional diversification of this gene lineage, we studied the role of pre-duplication FUL-like genes in columbine (Aquilegia coerulea). Our results show that AqcFL1 genes are broadly expressed in vegetative and reproductive meristems, leaves and flowers. Virus-induced gene silencing of the loci results in plants with increased branching, shorter inflorescences with fewer flowers, and dramatic changes in leaf shape and complexity. However, aqcfl1 plants have normal flowers and fruits. Our results show that, in contrast to characterized AP1/FUL genes, the AqcFL1 loci are either genetically redundant or have been decoupled from the floral genetic program, and play a major role in leaf morphogenesis. We analyze the results in the context of the core eudicot duplication, and discuss the implications of our findings in terms of the genetic regulation of leaf morphogenesis in Aquilegia and other flowering plants.
Gleason EJ, Kramer EM.
Conserved roles for Polycomb Repressive Complex 2 in the regulation of lateral organ development in Aquilegia x coerulea 'Origami'. BMC Plant Biol. 2013;13 :185.
AbstractBACKGROUND: Epigenetic regulation is necessary for maintaining gene expression patterns in multicellular organisms. The Polycomb Group (PcG) proteins form several complexes with important and deeply conserved epigenetic functions in both the plant and animal kingdoms. One such complex, the Polycomb Repressive Complex 2 (PRC2), is critical to many developmental processes in plants including the regulation of major developmental transitions. In addition, PRC2 restricts the expression domain of various transcription factor families in Arabidopsis, including the class I KNOX genes and several of the ABCE class MADS box genes. While the functions of these transcription factors are known to be deeply conserved, whether or not their regulation by PRC2 is similarly conserved remains an open question. RESULTS: Here we use virus-induced gene silencing (VIGS) to characterize the function of the PRC2 complex in lateral organ development of Aquilegia x coerulea 'Origami', a member of the lower eudicot order Ranunculales. Leaves with PRC2 down-regulation displayed a range of phenotypes including ruffled or curled laminae, additional lobing, and an increased frequency of higher order branching. Sepals and petals were also affected, being narrowed, distorted, or, in the case of the sepals, exhibiting partial homeotic transformation. Many of the petal limbs also had a particularly intense yellow coloration due to an accumulation of carotenoid pigments. We show that the A. x coerulea floral MADS box genes AGAMOUS1 (AqAG1), APETALA3-3 (AqAP3-3) and SEPALLATA3 (AqSEP3) are up-regulated in many tissues, while expression of the class I KNOX genes and several candidate genes involved in carotenoid production or degradation are largely unaffected. CONCLUSIONS: PRC2 targeting of several floral MADS box genes may be conserved in dicots, but other known targets do not appear to be. In the case of the type I KNOX genes, this may reflect a regulatory shift associated with the evolution of compound leaves.
Waters MT, Tiley AM, Kramer EM, Meerow AW, Langdale JA, Scotland RW.
The corona of the daffodil Narcissus bulbocodium shares stamen-like identity and is distinct from the orthodox floral whorls. Plant J. 2013;74 :615-25.
AbstractThe structural homology of the daffodil corona has remained a source of debate throughout the history of botany. Over the years it has been separately referred to as a modified petal stipule, stamen and tepal. Here we provide insights from anatomy and molecular studies to clarify the early developmental stages and position of corona initiation in Narcissus bulbocodium. We demonstrate that the corona initiates as six separate anlagen from hypanthial tissue between the stamens and perianth. Scanning electron microscope images and serial sections demonstrate that corona initiation occurs late in development, after the other floral whorls are fully developed. To define more precisely the identity of the floral structures, daffodil orthologues of the ABC floral organ identity genes were isolated and expression patterns were examined in perianth, stamens, carpel, hypanthial tube and corona tissue. Coupled with in situ hybridisation experiments, these analyses showed that the expression pattern of the C-class gene NbAGAMOUS in the corona is more similar to that of the stamens than that of the tepals. In combination, our results demonstrate that the corona of the daffodil N. bulbocodium exhibits stamen-like identity, develops independently from the orthodox floral whorls and is best interpreted as a late elaboration of the region between the petals and stamens associated with epigyny and the hypanthium.
Nikolov LA, Endress PK, Sugumaran M, Sasirat S, Vessabutr S, Kramer EM, Davis CC.
Developmental origins of the world's largest flowers, Rafflesiaceae. Proc Natl Acad Sci USA. 2013;110 :18578-83.
AbstractRafflesiaceae, which produce the world's largest flowers, have captivated the attention of biologists for nearly two centuries. Despite their fame, however, the developmental nature of the floral organs in these giants has remained a mystery. Most members of the family have a large floral chamber defined by a diaphragm. The diaphragm encloses the reproductive organs where pollination by carrion flies occurs. In lieu of a functional genetic system to investigate floral development in these highly specialized holoparasites, we used comparative studies of structure, development, and gene-expression patterns to investigate the homology of their floral organs. Our results surprisingly demonstrate that the otherwise similar floral chambers in two Rafflesiaceae subclades, Rafflesia and Sapria, are constructed very differently. In Rafflesia, the diaphragm is derived from the petal whorl. In contrast, in Sapria it is derived from elaboration of a unique ring structure located between the perianth and the stamen whorl, which, although developed to varying degrees among the genera, appears to be a synapomorphy of the Rafflesiaceae. Thus, the characteristic features that define the floral chamber in these closely related genera are not homologous. These differences refute the prevailing hypothesis that similarities between Sapria and Rafflesia are ancestral in the family. Instead, our data indicate that Rafflesia-like and Sapria-like floral chambers represent two distinct derivations of this morphology. The developmental repatterning we identified in Rafflesia, in particular, may have provided architectural reinforcement, which permitted the explosive growth in floral diameter that has arisen secondarily within this subclade.
pnas-2013-nikolov-18578-83.pdf
pnas.201310356si.pdf Zhang R, Guo C, Zhang W, Wang P, Li L, Duan X, Du Q, Zhao L, Shan H, Hodges SA, et al. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proc Natl Acad Sci USA. 2013;110 :5074-9.
AbstractAbsence of petals, or being apetalous, is usually one of the most important features that characterizes a group of flowering plants at high taxonomic ranks (i.e., family and above). The apetalous condition, however, appears to be the result of parallel or convergent evolution with unknown genetic causes. Here we show that within the buttercup family (Ranunculaceae), apetalous genera in at least seven different lineages were all derived from petalous ancestors, indicative of parallel petal losses. We also show that independent petal losses within this family were strongly associated with decreased or eliminated expression of a single floral organ identity gene, APETALA3-3 (AP3-3), apparently owing to species-specific molecular lesions. In an apetalous mutant of Nigella, insertion of a transposable element into the second intron has led to silencing of the gene and transformation of petals into sepals. In several naturally occurring apetalous genera, such as Thalictrum, Beesia, and Enemion, the gene has either been lost altogether or disrupted by deletions in coding or regulatory regions. In Clematis, a large genus in which petalous species evolved secondarily from apetalous ones, the gene exhibits hallmarks of a pseudogene. These results suggest that, as a petal identity gene, AP3-3 has been silenced or down-regulated by different mechanisms in different evolutionary lineages. This also suggests that petal identity did not evolve many times independently across the Ranunculaceae but was lost in numerous instances. The genetic mechanisms underlying the independent petal losses, however, may be complex, with disruption of AP3-3 being either cause or effect.
Zhang W, Steinmann VW, Nikolov L, Kramer EM, Davis CC.
Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors. Front Plant Sci. 2013;4 :302.
AbstractMalpighiaceae possess flowers with a unique bilateral symmetry (zygomorphy), which is a hypothesized adaptation associated with specialization on neotropical oil bee pollinators. Gene expression of two representatives of the CYC2 lineage of floral symmetry TCP genes, CYC2A and CYC2B, demarcate the adaxial (dorsal) region of the flower in the characteristic zygomorphic flowers of most Malpighiaceae. Several clades within the family, however, have independently lost their specialized oil bee pollinators and reverted to radial flowers (actinomorphy) like their ancestors. Here, we investigate CYC2 expression associated with four independent reversals to actinomorphy. We demonstrate that these reversals are always associated with alteration of the highly conserved CYC2 expression pattern observed in most New World (NW) Malpighiaceae. In NW Lasiocarpus and Old World (OW) Microsteria, the expression of CYC2-like genes has expanded to include the ventral region of the corolla. Thus, the pattern of gene expression in these species has become radialized, which is comparable to what has been reported in the radial flowered legume clade Cadia. In striking contrast, in NW Psychopterys and OW Sphedamnocarpus, CYC2-like expression is entirely absent or at barely detectable levels. This is more similar to the pattern of CYC2 expression observed in radial flowered Arabidopsis. These results collectively indicate that, regardless of geographic distribution, reversals to similar floral phenotypes in this large tropical angiosperm clade have evolved via different genetic changes from an otherwise highly conserved developmental program.
Chiang GC, Barua D, Dittmar E, Kramer EM, de Casas RR, Donohue K.
Pleiotropy in the wild: the dormancy gene DOG1 exerts cascading control on life cycles. Evolution. 2013;67 :883-93.
AbstractIn the wild, organismal life cycles occur within seasonal cycles, so shifts in the timing of developmental transitions can alter the seasonal environment experienced subsequently. Effects of genes that control the timing of prior developmental events can therefore be magnified in the wild because they determine seasonal conditions experienced by subsequent life stages, which can influence subsequent phenotypic expression. We examined such environmentally induced pleiotropy of developmental-timing genes in a field experiment with Arabidopsis thaliana. When studied in the field under natural seasonal variation, an A. thaliana seed-dormancy gene, Delay Of Germination 1 (DOG1), was found to influence not only germination, but also flowering time, overall life history, and fitness. Flowering time of the previous generation, in turn, imposed maternal effects that altered germination, the effects of DOG1 alleles, and the direction of natural selection on these alleles. Thus under natural conditions, germination genes act as flowering genes and potentially vice versa. These results illustrate how seasonal environmental variation can alter pleiotropic effects of developmental-timing genes, such that effects of genes that regulate prior life stages ramify to influence subsequent life stages. In this case, one gene acting at the seed stage impacted the entire life cycle.
Sharma B, Kramer EM.
Virus-induced gene silencing in the rapid cycling columbine Aquilegia coerulea "Origami". Methods Mol Biol. 2013;975 :71-81.
AbstractAquilegia Origami is an emerging model system for ecology and evolution, which has numerous genetic and genomic tools. Virus-induced gene silencing (VIGS) has been established as an effective approach to study gene function in Aquilegia. In the current protocol, we demonstrate VIGS using Agrobacterium strain GV3101 carrying tobacco rattle virus (TRV)-based constructs to infect Aquilegia coerulea "Origami" plants via vacuum infiltration.