Short title:

Altered auxin response in tarani/ubp14 mutant

Corresponding author(s) details:

Utpal Nath, Associate Professor, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India; phone + 91 (0)80 22932414; fax+ 91 (0)80 23602697

Title: The ubiquitin-specific protease TNI/UBP14 functions in ubiquitin recycling and affects auxin response

All authors names and affiliations:

Parinita Majumdar¹,*, Premananda Karidas¹,*, Imran Siddiqi² and Utpal Nath¹,#

¹Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India

²Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India

* These two authors contributed equally

One-sentence summary:

Arabidopsis TNI/UBP14 destabilizes AUX/IAA repressors and promotes auxin response by ubiquitin recycling.

Author contributions:

PK mapped and cloned TNI, performed part of phenotypic analysis, generated TNI over-expression line, down-regulation line and pTNI::GUS line and analyzed them; PM performed part of phenotypic analysis and all the auxin-related experiments, analyzed the data, made the figures and wrote the first draft of the MS. IS guided PK with intellectual and material inputs in cloning TNI. UN contributed in designing experiments, guided the first two authors and finalized the manuscript.

Funding information:

PM and PK were supported by fellowships from Ministry of Human Resource Development, Government of India. UN is thankful to DST-FIST, UGC Centre for Advanced Study and DBT-IISc Partnership Program Phase-II at IISc (sanction No. BT/PR27952/INF/22/212/2018) for the funding and infrastructure support.
Corresponding author email:

utpalnath@iisc.ac.in

ABSTRACT

The ubiquitin-mediated proteasomal pathway regulates diverse cellular processes in plants by rapidly degrading target proteins, including the repressors of hormone signaling. Though ubiquitin proteases play key role in this process by cleaving poly-ubiquitin chains to monomers, their function has not been studied in detail by mutational analysis. Here, we show that mutation in TARANI/UBIQUITIN-SPECIFIC PROTEASE 14(TNI/UBP14) leads to reduced auxin response and widespread auxin-related phenotypic defects in Arabidopsis thaliana. In a tni partial loss-of-function mutant that was originally isolated based on altered leaf-shape, activity of the auxin responsive reporters DR5::GUS, DR5::nYFP and IAA2::GUS was reduced. Genetic interaction studies suggested that TNI is involved in auxin signaling and acts alongside TIR1, ARF7, and AUX1. Map-based cloning identified TNI as UBIQUITIN SPECIFIC PROTEASE14. Inefficient splicing of the mutant TNI transcript resulted in the formation of an inactive UBP14 protein, which led to the accumulation of poly-ubiquitin chains and excess poly-ubiquitinated proteins in the mutant. In addition to reduced auxin response, increased DII:VENUS, IAA18:GUS, and HS::AXR3-NT:GUS level was also observed in tni, perhaps due to inefficient poly-ubiquitin hydrolysis and proteasome-mediated degradation. Together, our study identifies a function for TNI/UBP14 in auxin response through ubiquitin recycling.

INTRODUCTION

In plants, response pathways of several major phytohormones rely on 26S proteasome-mediated protein degradation. For example, the negative regulators of auxin, gibberellic acid (GA), and jasmonic acid (JA) signaling pathways, such as AUX/IAA, DELLA, and JASMONATE-ZIM DOMAIN (JAZ), respectively, undergo poly-ubiquitination and are subsequently degraded by the 26S proteasome, resulting in a change in gene expression (Daviere and Archard 2013; Gray et al., 2001; Ruegger et al., 1998; Wang and Deng, 2011). The poly-ubiquitin chains generated upon target protein degradation are hydrolysed into mono-ubiquitin by a group of processing enzymes known as de-ubiquitinases (DUBs) (Callis, 2014; Yan et al., 2000; Majumdar and Nath, 2020). These proteases also hydrolyse ubiquitin poly-proteins linked head-to-tail by an α-peptide bond and ubiquitin-ribosomal extension proteins into mono-ubiquitin (Callis, 2014). Thus, DUBs are implicated in ubiquitin recycling.
to accomplish diverse cellular function. Domain organization along with the catalytic residues categorizes the DUBs into five families: UBIQUITIN SPECIFIC PROTEASES (UBPs), UBIQUITIN C-TERMINAL HYDROLASES, OVARIAN TUMOR PROTEASES, MACHADO–JOSEPH DOMAIN PROTEASES, and JAB1/MPN/MOV34 proteases (Yan et al., 2000; Isono and Nagel, 2014; Majumdar and Nath, 2020). Among these, UBPs comprise the largest family with 27 members in Arabidopsis (Yan et al., 2000). The T-DNA knock-out lines ubp14 and ubp19 show embryonic lethality whereas ubp15 has narrow and serrated leaves (Liu et al., 2008). Single loss-of-function mutants of the remaining UBPs do not exhibit discernible phenotypic alteration, suggesting genetic redundancy (Liu et al., 2008). However, higher-order mutants exhibit defects in cell cycle progression, endoduplication, gametogenesis, meristem maintenance, and flowering time control (Xu et al., 2016, An et al., 2018; Liu et al., 2008). Most of these UBPs show in vitro de-ubiquitination activity against α-linked or iso-linked poly-ubiquitin chains and ribosomal extension proteins (Isono and Nagel, 2014; Majumdar and Nath, 2020).

Among the three phytohormones mentioned above, auxin is a key member that regulates a plethora of growth and developmental programs, including embryogenesis, organ morphogenesis, venation pattern, root development, and gravitropism (Hobbie et al., 2000; Swarup et al., 2005; ten Hove et al., 2015). Studies over the past few decades have characterized the auxin signal transduction pathway, which comprises the TRANSPORT INHIBITOR RECEPTOR1 (TIR1) auxin receptor, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitor proteins, and AUXIN RESPONSE FACTOR (ARF) transcription factors (Ruegger et al., 1998; Reed, 2001). Several genetic and biochemical studies have emphasized the importance of auxin-dependent degradation of AUX/IAAs by SCF{TIR1/AFB} via the 26S proteasome-mediated degradation pathway for maintaining normal auxin response in Arabidopsis (Gray et al., 2001; Leyser, 2018). Hence, the auxin level of a given cell is translated into a response by activating a set of ARFs through their release from AUX/IAA repression. Gain-of-function mutations in the degron motif of AUX/IAAs enhance their stability, resulting in auxin-related defects in embryogenesis, vein patterns, lateral root formation, and apical dominance. These mutants include axr3-1, slr, shy2-2, crane-1/iaa18-1, and iaa28-1 (Fukaki et al., 2002; Leyser et al., 1996; Ploense et al., 2009; Tian and Reed, 1999; Uehara et al., 2008). Single loss-of-function mutants of AUX/IAAs do not exhibit visible phenotypic alterations, reflecting genetic redundancy (Okushima et al., 2005).
Perturbation in the components of the 26S proteasome pathway is expected to adversely affect the auxin, GA, and JA pathways since their response is triggered by the degradation of their repressors. However, the functions of only a handful of these components have been analyzed by mutational studies. We previously reported the isolation and characterization of an Arabidopsis mutant named tarani (tni) with pleiotropic phenotypic defects including altered leaf shape (Karidas Premananda, PhD Thesis, 2014; Karidas et al., 2015). Here, we have identified TNI as UBP14 that is involved in ubiquitin recycling. Each of the null alleles of UBP14 reported earlier is embryonic lethal, rendering further studies of this gene in post-embryonic development a difficult task (Doelling et al., 2001; Tzafrir et al., 2002). However, the hypomorphic tni allele allows us to study the function of UBP14 in post-embryonic development. The only other reported allele of UBP14 with post-embryonic viability is da3-1, which has defective nuclear ploidy and organ growth (Xu et al., 2016). By carrying out detailed phenotypic analysis of tni seedlings, we found that TNI/UBP14 is required for optimal auxin response in Arabidopsis. Homozygous tni plants showed diverse phenotypic aberrations including defective embryo pattern, tricotyledonous and rootless seedlings, altered root gravitropism, and fewer lateral roots. These defects are also found in mutants with perturbed auxin response. Ubiquitin recycling and turn-over of several AUX/IAAs were perturbed in tni seedlings. Together, our study suggests that TNI/UBP14 maintains a balance between poly-ubiquitin and mono-ubiquitin, which is necessary for the turn-over of auxin signaling repressors through the 26S proteasome and thus required for normal auxin response.
RESULTS

Altered auxin-related phenotype in tni

The tarani (tni) mutant with altered leaf shape was originally isolated in a forward genetic screen (Karidas et al., 2015). Detailed characterization of tni revealed multiple defects in embryonic and post-embryonic development (Fig. 1). The tni embryo exhibited an aberrant early cell division pattern (Fig. 1 A-C). In wild-type, the apical cell of the 1-cell pro-embryo undergoes vertical division to form the 2-cell pro-embryo and the basal cell undergoes a series of anticlinal division to form the suspensor (Boscá et al., 2011). Whereas the apical cell of each of the wild-type embryos studied (n=30) underwent vertical division, a noticeable fraction of tni embryos showed horizontal (~21%, n=87) or oblique (~8%, n=87) division (Fig. 1A; Supplemental Fig. S1A and B). Besides, the topmost suspensor cell in ~36% tni embryo (n=38) underwent periclinal division, which was never observed in Col-0 (n=30) (Fig. 1B). Such defects are also observed in the auxin-signaling mutant bodenlos (bdl) and the higher-order polar auxin-transport mutant pin2pin3pin4pin7 (pin-formed) (Hamann et al., 1999; Blilou et al., 2005). Hypophysis, the precursor of root stem cell initials, undergoes asymmetric division during the dermatogen stage of embryogenesis and forms a lens-shaped cell, which is incorporated into the embryo at the globular stage (Scheres et al., 1994). A normal lens-shaped cell was observed in all the Col-0 globular embryos (n=30), whereas ~7% of tni embryos (n=95) did not form a proper lens-shaped cell (Fig. 1C). The lack of such formative division, which is necessary for specifying root stem cell initials, is expected to result in rootless seedlings. We observed ~13% rootless seedlings in tni (n=407), which was never seen in Col-0 (n=127) (Fig. 1D). Perturbed auxin signaling in the gain-of-function mutant bdl and in the loss-of-function mutant monopteros (mp) also results in rootless seedlings (Hamann et al., 1999; 2002).

The post-embryonic developmental defects in tni included tricotyledonous seedlings, reduced complexity in cotyledon venation, defects in root gravitropic response, fewer lateral roots, larger seeds, and an increase in petal number (Fig. 1E-O). We estimated that ~4% of tni seedlings (n=306) form three cotyledons (Fig. 1E), which was never observed in Col-0. To address the origin of this phenotype, we examined the transition-state embryos when cotyledon primordia are initiated (ten Hove et al., 2015). Col-0 embryo always formed two cotyledon primordia whereas tni embryo occasionally produced three (Fig. 1F). Tricotyledonous phenotype is also observed in the pin-formed 1(pin1) loss-of-function
mutant with perturbed auxin transport (Krecek et al., 2009). Mature tni cotyledons showed fewer complete areoles (closed veins) as opposed to four complete areoles produced by the Col-0 cotyledons (Fig. 1G and H). Nearly 20% of Col-0 cotyledons (n=103) showed maximal complexity with four complete areoles and the remaining had <4 areoles with some open vasculature (Fig. 1H and Supplemental Fig. S1C and D) (Sieburth, 1999). By contrast, only ~10% (n=90) of tni cotyledons formed four areoles and another ~10% exhibited an open-top vein defect which was never seen in Col-0 (Fig. 1H). Such a venation defect is also observed in the auxin-resistant mutant6 (axr6) mutant (Hobbie et al., 2000).
The tni mutant exhibited defects in the sub-aerial organs as well (Fig. 1I-L). Primary roots in tni seedlings showed defects in gravitropic response (Fig. 1I). Col-0 primary roots responded to gravistimulation by bending towards gravity at an average angle of 83.1° ± 11.50 (n=52) (Fig. 1J). By contrast, the tni roots bent only by 56.1° ± 11.0 (n=43) under similar experimental conditions, indicating reduced gravitropic response. The tni seedlings also produced fewer lateral roots (Fig. 1K and L). In Col-0 seedlings, the number of emerged lateral roots steadily increased from 7 to 11 days after germination (DAG) (Fig. 1L). Though a similar trend was observed in the tni seedlings, the number remained ~50% lower at all the growth stages measured. Fewer lateral roots have been reported in mutants with perturbed auxin transport and signaling such as tirl-1, auxin1-7 (aux1-7), and arf7-1 (Ruegger et al., 1998; Marchant et al, 2002; Okushima et al., 2007).

The tni mutant also showed an altered floral phenotype. Whereas all Col-0 flowers (n=142) formed four petals, the petal number in ~58% of tni flowers (n=140) increased to 5–6 (Fig. 1M). This phenotype is similar to the weaker allele of polar auxin-transport mutant pin1-5 (Yamaguchi et al., 2014). In addition, tni plants produced bigger seeds with a ~30% increase in seed area compared to wild-type (Fig. 1N and O). Bigger seeds are seen in the mutant of ARF2, a negative regulator of cell division and expansion in Arabidopsis (Schruff et al., 2005).

Reduced auxin response in tni

The altered phenotype in tni described above, also seen in several auxin-pathway mutants (Swarup et al., 2005; Marchant et al., 2002; Ruegger et al., 1998, Bennett et al., 1995), suggests a possible involvement of TNI in the auxin pathway. Therefore, we compared auxin response in Col-0 and tni seedlings using the auxin-responsive DR5::GUS, DR5::nYFP, and IAA2::GUS reporter lines (Ulmosovet al., 1997; Mähönen et al., 2015; Marchant et al., 2002). GUS assay of 3-day-old DR5::GUS seedlings showed strong β-glucuronidase activity throughout the cotyledon margin with the highest signal at the tip, indicative of auxin maxima (Mattsson et al., 2003; Sabatini et al., 1999) (Fig. 2A). However, no distinct auxin maxima were detected in the DR5::GUS tni cotyledons, which exhibited an overall reduction in GUS signal except for at the margin. A similar reduction in auxin maxima was also observed at the tip of emerging leaves, primary roots, and lateral roots of DR5::GUS tni seedlings (Fig. 2B-D). Comparison of the fluorescence signal in DR5::nYFP Col-0 and DR5::nYFP tni also revealed reduced auxin maxima at the cotyledon tips (Fig. 2E) and root...
tips (Fig. 2F), whereas the nYFP signal was increased in the tni columella cells, which appeared to have bigger nuclei (Fig. 2F). Quantitative analysis of DR5 activity by Western blot analysis using anti-GFP antibody showed reduced DR5::nYFP signal in the DR5::nYFP tni seedlings compared to DR5::nYFP (Fig. 2G). Similarly, the β-glucuronidase activity was reduced to nearly half in DR5::GUS tni seedlings compared to DR5::GUS (Fig. 2H). These results suggest that auxin response is reduced in the tni mutant.

IAA2 is an immediate auxin-responsive gene whose induction depends on the endogenous auxin level. IAA2::GUS signal was detected primarily in the vasculature of Col-0 cotyledons, leaves, and primary roots, and in the root meristematic region (Fig. 2I-K), which is consistent with previous reports (Marchant et al, 2002). By contrast, vascular IAA2::GUS activity in tni was reduced in each of these organs with expression limited only to their tips. In addition, ectopic expression was observed in the tni cotyledon margin (Fig. 2I).
The histochemical analysis of DR5::GUS and IAA2::GUS described above, together with the DR5::nYFP expression data, suggests that auxin response is reduced in tni. The dataset of an earlier microarray experiments carried out on young tni leaves (Karidas et al., 2015) identified 29 auxin-related genes that were differentially expressed by >2-fold (16 down-regulated and 13 up-regulated) in tni compared to wild-type (Supplemental Fig. S2A). These genes are predicted to regulate auxin biosynthesis, transport, or signaling. Many of these transcripts are also altered in seedlings externally treated with indole-3-acetic acid (IAA) (Supplemental Fig. S2B). Taken together, it appears that TNI is required to maintain normal auxin response in Arabidopsis.

Altered sensitivity of tni to external auxin manipulation

Altered auxin response in tni could be due to perturbed auxin level or signaling. To test this, we compared the sensitivity of Col-0 and tni seedlings towards exogenous administration of the synthetic auxin 1-naphthaleneacetic acid (NAA). Since auxin is known to stimulate lateral root formation in a dose-dependent manner (Ivanchenko et al., 2010), we used the number of lateral roots as a read-out of auxin sensitivity. In Col-0, the number of lateral roots progressively increased with increased concentrations of NAA up to 100 nM, followed by a decrease with a further increase in NAA concentration (Fig. 3A and B), thus forming a characteristic bell-shaped auxin-response curve (Ivanchenko et al., 2010). Though a similar trend was observed for tni roots, the peak response in tni was achieved at a NAA concentration (200 nM) that was twice that required for Col-0 (Fig. 3B), consistent with its reduced auxin-response phenotypes (Fig. 2). Conversely, tni showed increased sensitivity towards the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA), which blocks lateral root initiation by reducing the IAA level at the basal root meristem (Casimiro et al., 2001). The total number of lateral roots in Col-0 remained unaltered up to 400 nM NPA, beyond which the value declined to ~20% at 1 μM concentration (Fig. 3C and D). In tni, the lateral root number reduced to <40% at 400 nM NPA and to nearly zero at 1 μM concentration. Taken together, these results suggest a reduced endogenous auxin response in tni roots.

Genetic interaction between tni and mutants with auxin-related growth defects

To assess the genetic link between TNI and the auxin pathway, we crossed tni with mutants defective in auxin signaling and transport, such as arf7-1, tir1-1, and aux1-7, and studied the phenotypes of the double homozygous lines. ARF7 and ARF19 redundantly promote lateral
root formation and the *arf7-1* single mutant produces fewer lateral roots (Okushima et al., 2005, 2007). Since *arf19-1* is a weak allele and *arf7-1 arf19-1* double mutant totally lacks lateral roots, we studied the genetic interaction of *tni* with *arf7-1*. Lateral root formation was severely reduced in the *arf7-1 tni* double mutant compared to the parental lines (Fig. 4A). The auxin-receptor mutant *tir1-1* also forms fewer lateral roots than Col-0 (Ruegger et al., 1998), and the number was further reduced in the *tir1-1 tni* double mutant (Fig. 4B). *AUX1* encodes an auxin-influx carrier that promotes lateral root formation by facilitating the distribution of auxin from leaf to root, and *aux1-7* seedlings make fewer lateral roots and lateral root primordia (LRP) (Marchant et al., 2002). Phenotypic analysis showed that the *aux1-7 tni* mutant had fewer lateral roots than either of the parents (Fig. 4C). Since the mutant alleles used in these genetic interaction studies were weak in nature, one interpretation of these results is that *TNI* works in the auxin-response pathway.

TNI encodes UBP14
Using a map-based cloning approach, we delimited the tni locus to a 65-kb long genomic region with the help of 927 recombinant mutant plants in a mapping population (see Methods). Sequencing of the protein-coding genes within this interval identified an exonic G→A transition in the \textit{At3G20630} locus (Fig. 5A and Supplemental Fig. S3A and B). This mutation mapped at the canonical 3′ splice acceptor site at the junction of the 3rd intron and the 4th exon. \textit{At3G20630} is predicted to encode UBP14, a ZnF de-ubiquitinase protein involved in ubiquitin recycling (Doelling et al., 2001; Xu et al., 2016). Several alleles of \textit{At3G20630} had been previously described (Fig. 5A), most of which show embryonic lethality (Majumdar and Nath, 2020). To further examine tni identity, we performed an allelism test with \textit{titan6-4} (ttn6-4), a known allele of \textit{UBP14} (Tzafrir et al., 2002). When \textit{tni/tni} plants were crossed to \textit{ttn6-4/+} heterozygous plants (which resembled Col-0), 12 out of 42 F\textsubscript{1} individuals produced cup-shaped rosette leaves (Fig. 5B-D), whereas \textit{tni/+} plants always resembled Col-0 suggesting that \textit{tni} is allelic to \textit{ttn6}. Further, the cup-shaped phenotype of \textit{tni} leaves was partly rescued by over-expressing the wild-type \textit{TNI} transcript; 3 out of 14 hygromycin-resistant transformants recovered and produced flat rosette leaves, though they were rounder than the Col-0 leaves (Fig. 5E). In addition, expressing an artificial microRNA targeting the wild-type \textit{TNI} transcript under the constitutive \textit{RPS5a} promoter in the Col-0 background partially recapitulated the \textit{tni} phenotype (Fig. 5F); 3 out of 25 hygromycin-resistant transformants recovered produced rosette leaves with weak cup-shaped lamina.

The tni locus encodes \textit{TNI}intron, an aberrant UBP14

The wild-type \textit{TNI} locus consists of 20 exons and 19 introns, which is predicted to encode a 88-kDa protein product (Fig. 5A; Supplemental Fig.S3C). If the G→A transition interferes in splicing, the \textit{tni} locus is predicted to produce an additional aberrant transcript (\textit{TNI}intron),...
whereby 102 nucleotides corresponding to the 3rd intron are retained in frame in the wild-type transcript (Fig. 5G). Whereas RT-PCR analysis with primers flanking the 3rd intron (Fig. 5G) detected a single product of 750 bp in both Col-0 and tni, an additional band corresponding to the retention of the 3rd intron was detected in the tni samples (Fig. 5I). The intensity of these two bands in tni mutant, which corresponded to TNI and TNI intron transcripts, seemed comparable, indicating nearly equal abundance of the two transcripts. Transgenic Col-0
plants expressing the \textit{RPS5a::TNi} cassette produced cup-shaped leaves in the T\textsubscript{1} generation (Supplemental Fig. S3E); 2 out of 107 independent insertion lines produced all cup-shaped leaves, whereas another 32 lines showed at least one cup-shaped leaf. This genetic evidence suggests an association between retention of the 3rd \textit{TNI} intron and the \textit{tni} phenotype.

Western blot analysis using an antibody generated against a 19-residue polypeptide within the ZnF domain detected a single band in both Col-0 and \textit{tni} seedlings that corresponded to the endogenous TNI (see Methods) (Fig. 5J; Supplemental Fig. S3F). This antibody also detected the GST-TNI fusion protein but failed to recognize a truncated TNI that lacked the ZnF domain (Supplemental Fig. S3G and H), suggesting that the antibody is specific to TNI. The \textit{TNI} intron transcript is likely to encode a full-length TNI protein wherein the ZnF domain is disrupted by an insertion of an additional 34 residues (Fig. 5H; Supplemental Fig. S3D). Since both wild-type and mutant transcripts were detected in equal proportion in \textit{tni} (Fig. 5I), it is likely that both TNI (88 kDa) and its mutant variant TNI\textit{intron} (92 kDa) are translated in \textit{tni} (Fig. 5J), though they cannot be resolved in Western blot analysis due to their similar molecular weights. Indeed, the anti-GST antibody could not distinguish between recombinant GST-TNI and GST-TNI\textit{intron} in Western blot analysis (Supplemental Fig. S3H).

\textbf{Cell type-specific TNI activity regulates lateral root formation}

UBP14 has been reported to be detected ubiquitously in all tissue types (Doelling et al., 2001; Xu et al., 2016). Consistently, GUS activity was detected throughout the seedlings in all five independent \textit{pTNI::GUS} reporter lines that we generated (Supplemental Fig. S4). In primary roots, more intense GUS signal was detected in discrete pericycle cells that initiate lateral roots (De Smet et al., 2012). Thus, promotion of lateral roots by TNI (Fig. 1K and L) could be due to its local expression in roots or due to the systemic effect of auxin response. To test this, we manipulated TNI expression in the lateral root initials of transgenic plants and studied its effect on lateral roots. When we expressed an artificial microRNA against TNI under the truncated \textit{PLETHORA7} promoter (\textit{pPLT7}) that is active specifically in LRP\textsubscript{s} (Prasad et al., 2011), lateral root number was reduced by 45–80\% in six independent \textit{pPLT7::TNI-amiR} transgenic lines in the T\textsubscript{2} generation. Reduced lateral root number was also observed in two homozygous \textit{pPLT7::TNI-amiR} transgenic lines established in the T\textsubscript{3} generation (Supplemental Fig. S5A-C). When TNI\textit{intron} was expressed in the lateral root initials, the number of lateral roots was reduced to \textasciitilde50\% in a homozygous \textit{pPLT7::TNI}
transgenic line (Supplemental Fig. S5B and D), a reduction that is similar to what was observed in the tni allele (Fig. 1L). These results suggest that fewer lateral roots in tni is caused by the local loss of UBP14 activity in the lateral root initials.

TNI\text{intron} lacks de-ubiquitinase activity

To test whether the mutant protein retains enzymatic activity, we compared TNI with TNI\text{intron} through an *in vitro* de-ubiquitination assay (Doelling et al., 2001; Rao-Naik et al., 2000). Recombinant TNI efficiently cleaved 2–7-mer Lys48-linked poly-ubiquitin substrates into mono-ubiquitin (Supplemental Fig. S6A). However, TNI\text{intron} as well as the catalytically inactive UBPI\text{4C317S} control protein (Doelling et al., 2001) failed to cleave poly-ubiquitin substrates. TNI\text{intron} and TNI\text{C317S} also failed to cleave \textit{UBQ10}-encoded α-linked hexa-ubiquitin chains in \textit{E. coli} cells (Rao-Naik et al., 2000), whereas hexa-ubiquitin substrate was completely cleaved into di- and mono-ubiquitin forms by TNI and UBPI4 from yeast, a functional homolog of TNI (Supplemental Fig. S6B) (Amerik et al., 1997). A similar *in vivo* de-ubiquitination assay in \textit{E.coli} cells expressing α-linked, His-tagged tetra-ubiquitin (Rao-Naik et al., 2000) also showed that TNI, but not TNI\text{intron} or TNI\text{C317S}, cleaves the substrate into His-tagged di- and mono-ubiquitin products as detected by anti-His antibody (Supplemental Fig. S6C). Together, these results show that TNI\text{intron} is catalytically inactive towards iso-linked and α-linked poly-ubiquitin substrates.

Increased accumulation of poly-ubiquitin and poly-ubiquitinated proteins in tni

Western blot analysis of the total protein samples from Col-0 and tni plants using anti-ubiquitin antibody showed reduced mono-ubiquitin and an excess accumulation of poly-ubiquitinated proteins in tni (Supplemental Fig. S7A and B). In line with the lack of catalytic activity in TNI\text{intron}, free poly-ubiquitin chains were detected only in tni plants (Supplemental Fig. S7A), as was reported earlier for other \textit{ubp14} alleles (Doelling et al., 2001; Xu et al., 2016). In Arabidopsis, the most abundant Lys48-linked poly-ubiquitin is implicated in protein turn-over through the 26S proteasome, whereas Lys63-linked poly-ubiquitin imparts non-degradative fate to the cellular proteins (Kim et al., 2013; Mevissen and Komander, 2017). Western blot analysis of the total protein extracts using linkage-specific antibodies showed a higher abundance of Lys48-linked poly-ubiquitinated proteins, and not Lys63-linked proteins, in tni seedlings relative to Col-0 (Fig. 6A and B), suggesting that TNI is involved in the turn-over of the cellular proteins by ubiquitin-26S proteasomal degradation. These ubiquitin antibodies did not recognize mono-ubiquitin since it lacks such linkages.
To determine whether proteasomal activity is altered in tni, we compared the sensitivity of Col-0 and tni seedlings to MG132, a proteasome inhibitor. Poly-ubiquitinated protein signal was more intense in tni than in Col-0 at 0, 0.1, and 0.2 mM MG132 (Supplemental Fig.S7C).
and D), suggesting that the tni cells are hyper-sensitive to the perturbation of proteasomal activity. Interestingly, MG132 treatment did not alter the steady-state level of free poly-ubiquitin chains in tni (Supplemental Fig. S7C), suggesting that their accumulation is caused by their inefficient hydrolysis by TNIintron. Indeed, incubation of total protein extract from tni seedlings with recombinant TNI, but not with TNIintron or TNIC317S, resulted in the disappearance of the free poly-ubiquitin chains with concomitant accumulation of mono-ubiquitin (Supplemental Fig. S8), resulting in a Western blot profile somewhat similar to the Col-0 profile (Supplemental Fig. S7A).

TNIintron binds to poly-ubiquitin substrate

To examine whether the 34-residue insertion in TNIintron interferes with its substrate-binding ability, we compared the interaction of various forms of TNI with Lys48-linked tetra-ubiquitin (Fig. 6C-D). Bead-bound GST-tagged, recombinant TNI, TNIintron, and TNIC317S were incubated with Lys48-linked tetra-ubiquitin substrate and the precipitate was analysed through Western blot analysis using anti-ubiquitin antibody. Each of the three forms of the protein bound to the substrate, whereas only TNI cleaved the tetra-ubiquitin into monomer (Fig. 6C). Thus, retention of the 3rd intron in TNIintron does not interfere with substrate binding.

To map the poly-ubiquitin binding domains of TNI, we generated and expressed five truncated forms of TNI in *E. coli* (Supplemental Fig. S9): (i) N-terminal ZnF domain alone (ZnF), (ii) TNI without ZnF (ΔZnF), (iii) TNI without UBA domains (ΔUBA), (iv) TNI without UBA2 (ΔUBA2), and (v) only the two UBA domains (UBA). Since full-length TNI efficiently hydrolysed poly-ubiquitin into monomer (Fig. 6C) and therefore cannot be used as a positive control for the binding study, we instead used TNIC317S (Fig. 6C). In Western blot analysis of *in vitro* substrate-binding assay, all the truncated forms of TNI and TNIC317S bound to the Lys48-linked tetra-ubiquitin substrate with varying efficiency (Fig. 6D). The ZnF domain of the TNIintron protein in isolation (named here as ZnF-TNIintron) also bound to the tetra-ubiquitin substrate (Fig. 6E), albeit with reduced efficiency, suggesting that its disruption does not affect its substrate-binding capability. Thus, the inability of TNIintron to hydrolyse poly-ubiquitin substrate is perhaps due to an overall conformational change rendering the catalytic domain inactive.

Increased abundance of AUX/IAA transcriptional repressors in tni
Reduced 26S-proteasome activity in tni may lead to an array of auxin-related growth defects by stabilizing AUX/IAA repressors, similar to what is found in their gain-of-function mutants (Tian and Reed, 1999; Hamann et al., 1999, Uehara et al., 2008). To test this, we compared DII:VENUS signals, a readout of AUX/IAA level, of tni and wild-type (Fig. 7A). Weak VENUS signal was detected in Col-0 primary root due to rapid turn-over of DII:VENUS, which is suggestive of high auxin activity. Col-0 roots expressing a mutant, non-degradable form of the protein, mDII:VENUS, showed strong and widespread VENUS signal, which is consistent with previous reports (Brunoud et al, 2012). The primary roots of DII:VENUS tni also showed VENUS signal stronger than Col-0. Western blot analysis of protein extracts from 7-day-old seedlings using anti-GFP antibody further confirmed that the level of DII:VENUS was indeed more abundant in tni seedlings than in Col-0 (Fig. 7B).

The above result suggests that the DII domain, and hence some of the AUX/IAA repressors, are stabilized in tni roots. To test this, we compared AXR3/IAA17 level in Col-0 and tni. The heat-inducible HS::AXR3-NT::GUS reporter line has been extensively used to monitor IAA17 turnover in various mutants in which protein degradation by 26S proteasome is affected (Gray et al., 2001). We detected weak and patchy GUS signal 20 min after heat-shock treatment of the HS::AXR3-NT::GUS seedlings, which disappeared within 80 min (Fig. 7C, top panel), suggesting efficient turnover of the protein in Col-0. The non-degradable form of the protein, axr3-1-NT::GUS, accumulated in the HS::axr3-1-NT::GUS line in large amounts at 20 min and continued to accumulate, producing stronger GUS signal after 80 min (Fig. 7C, middle panel). Similarly, the GUS signal in the HS::AXR3-NT::GUS tni cotyledons also accumulated with more intensity than in Col-0, and decreased at a slower pace retaining considerable signal even after 80 min of heat shock induction (Fig. 7C, bottom panel).

As in tni, reduced auxin sensitivity effects including fewer lateral roots is also seen in the iaa18-1 allele where IAA18 is stabilized (Ploense et al, 2009; Uehara et al., 2008). To determine if IAA18 is stabilized in the tni mutant, we compared IAA18:GUS activity of tni seedlings with Col-0. GUS signal was detected in the vasculature of cotyledons, lateral roots, and primary roots in the IAA18:GUS seedlings (Fig. 7D-F). Though the pattern of the signal remained more or less similar in the vasculature of the IAA18:GUS tni seedlings, its intensity increased suggesting more IAA18 abundance in the mutant. Quantification of β-glucuronidase activity also showed an increase in IAA18:GUS signal in tni plants (Fig. 7G). Taken together, the above observations suggest that TNI is required for the turn-over of certain AUX/IAA proteins.
Figure 7. Stabilization of AUX/IAAs in tni. (A) DII:VENUS signal in the primary roots of 7-day-old Col-0 (DII:VENUS and mDII:VENUS) and tni (DII:VENUS tni) seedlings. Strong signal of mDII:VENUS, a non-degradable version of DII domain served as a positive control. Scale bar, 50µm. (B) Anti-GFP Western blot of total protein extracts from 7-day-old Col-0 (DII:VENUS and mDII:VENUS) and tni (DII:VENUS tni) seedlings. α-β-ACTIN (α-β-ACT) served as internal control. Numbers indicate molecular-weight markers. (C) GUS activity in the cotyledons of 7-day-old seedlings after increasing durations of heat shock. The non-degradable form axr3-1-NT in the middle panel served as a positive control. NT denotes N-terminal domain. Scale bar, 200µm. (D–F) IAA18:GUS signal in cotyledon vein (D), lateral root (E), and primary root (F) of IAA18:GUS (Ler) and IAA18:GUS tni seedlings. Scale bar, 200µm (D) and 100µm (E–F). (G) β-glucuronidase activity in IAA18:GUS (Ler) and IAA18:GUS tni (tni) seedlings. Averages of triplicate biological replicates are shown. Error bars represent SD. *** denotes p<0.0001 (unpaired Student’s t-test).
DISCUSSION

The tni allele of UBP14 is recessive and likely hypomorphic in nature as its knockout alleles show embryonic lethality. The previously reported ttn6-4 allele, which has a deletion of 400 bp resulting in the elimination of exons 6 and 7, causes defective embryos arrested at the globular stage (Tzafrir et al., 2002). T-DNA insertions in the 7th and the 11th intron in ubp14-1 and ubp14-2 alleles, respectively, also yield null mutants with similar embryo phenotypes (Doelling et al., 2001). The tni allele also exhibited partial embryo lethality resulting in reduced seed setting (KaridasPremananda, PhD Thesis, 2014). The aborted embryos of ubp14-1 and ubp14-2 have higher levels of poly-ubiquitin and poly-ubiquitinated proteins (Doelling et al., 2001), implying that UBP14 is required for ubiquitin recycling, which is crucial for the progression of embryo development. Our results show that the tni plants also have elevated accumulation of un-anchored poly-ubiquitin chains as well as poly-ubiquitinated proteins with a concomitant reduction in mono-ubiquitin (Supplemental Fig. S7A and B). Thus, TNI/UBP14 is involved in ubiquitin recycling during post-embryonic development as well, failure of which results in multiple growth and developmental defects. The massive increase in total ubiquitin in tni can perhaps be explained by the reduction in the steady-state level of mono-ubiquitin, which is known to trigger increased ubiquitin biosynthesis (Park and Ryu, 2014). Indeed, poly-ubiquitin biosynthetic genes UBQ13 and UBQ14 are 2-fold up-regulated in tni, as revealed by an earlier microarray data set (Karidas et al., 2015). Detection of mono-ubiquitin in tni at a low abundance implies that partial de-ubiquitination activity is retained in the mutant, whereas mono-ubiquitin was not detected in the null alleles of ubp14 (Doelling et al., 2001).

Since two transcripts corresponding to wild-type TNI and aberrant TNIintron were detected in almost equal abundance in tni plants (Fig. 5I), it is likely that both normal and aberrant protein forms are expressed in comparable levels, assuming their translation efficiency is similar. Perhaps the lack of catalytic activity of half of the protein pool (TNIintron) results in an inefficient turn-over of poly-ubiquitin into mono-ubiquitin. Recently, it was shown that the da3-1 allele of UBP14 has a G→T transversion at the 5′ exon-intron boundary of the last intron, generating a premature stop codon (Xu et al., 2016). The protein encoded by the da3-1 locus is catalytically inactive since it lacks the C-terminal His box essential for catalysis. Our results show that UBP14 with disrupted ZnF domain (TNIintron) is also catalytically inactive. However, inactive TNIintron efficiently binds to the poly-ubiquitin substrates \textit{in vitro}, suggesting that the mutant protein sequesters some of the cellular targets and acts as a
dominant negative form of wild-type TNI. Sequestration of the substrates in the
pPLT7::TNIftron transgenic line perhaps results in fewer lateral roots, an effect similar to
target stabilization in the *tni* mutant due to the compromised activity of TNI.

Considering that UBPs maintain the steady-state level of mono-ubiquitin, which is an
essential substrate for marking the target proteins for degradation, perturbation in their
function is likely to affect multiple aspects of plant biology. Consequently, mutational
analysis of 27 Arabidopsis UBPs revealed their diverse function in embryogenesis, leaf
development, and organ size control (Doelling et al. 2001; Liu et al., 2008; Majumdar and
Nath, 2020). Complete loss of UBP14/19 results in embryo lethality, whereas disruption of
the de-ubiquitination activity of UBP14 in the hypomorphic *da3-1* allele results in increased
ploidy and enlarged organs (Xu et al., 2016). UBP26 de-ubiquitinates H2B in the nucleus,
which is required for gene silencing, and its loss severely affects seed development (Sridhar
et al., 2007; Luo et al., 2008). Mutant alleles of UBP15 produce narrow, serrated leaves (Liu
et al. 2008). Apart from these few examples, single mutants of other UBPs do not show
discernible phenotypic changes, suggesting functional redundancy. For example, UBP12 and
UBP13 together promote root meristem development by stabilizing ROOT MERISTEM
GROWTH FACTOR1 receptor (RGFR1) and RGFR2 (An et al., 2018). Besides, they remove
ubiquitin marks from poly-ubiquitinated MYC2 *in vitro* and promote JA response (Jeong et
al., 2017). These recent studies demonstrate the substrate specificity of UBPs and their pre-
eminent role in plant development (Majumdar and Nath, 2020). Therefore, it is not surprising
to see multiple phenotypic defects in the *tni/ubp14* mutant.

Most phenotypic defects in *tni* resembled those with compromised auxin response. For
example, the rootless phenotype of *tni* is similar to that of *bdl/IAA12* gain-of-function and
mp/arf5 loss-of-function mutants (Hamann et al., 1999, 2002). The stabilized form of IAA12
in the *bdl* mutant blocks auxin-dependent ARF5 activation, which is required for hypophysis
specification and root initiation (Schlereth et al, 2010). Similarly, venation patterning defects
are also reported in *mp* and *bdl* mutants (Berleth et al., 2000). Reduced vein complexity in *tni*
cotyledons could be either due to a reduced auxin transport or signaling. However, we did not
see any significant difference in expression of the auxin transporter *PIN1* between Col-0 and
tni (Supplemental Fig. S10). Another major auxin-related defect in *tni* is fewer lateral roots, a
phenotype also seen in plants with stabilized AUX/IAAs such as IAA3, 14, 18, 19, and 28
(Tian and Reed, 1999; Fukaki et al., 2002; Uehara et al., 2008). Gain-of-function mutation in
these repressors either produce no, or very few, lateral roots. ARF7 and 19 act downstream to
IAA14/SLR to promote lateral root initiation (Okushima et al., 2005, 2007). Genetic interaction of tni with arf7-1 showed an additive effect in lateral root emergence, which can be interpreted as both these genes working in parallel pathways. However, it should be noted that ARF19 compensates for the loss of ARF7 function in arf7-1, which shows a much weaker phenotype compared to arf7-1 arf19-1 double mutant. Moreover, the hypomorphic nature of tni allele may contribute to the additive phenotype of the arf7-1 tni double mutant, and perhaps in tir1-1 tni and aux1-7 tni mutants as well. Besides, tir1-1 and aux1-7 are also weak alleles, and combination of two weaker alleles is expected to show an additive phenotype, even if they work in the same pathway.

One possible mechanism of reduced auxin response in tni could be the stabilization of AUX/IAAs including IAA17 and 18 (Fig. 7). The Arabidopsis genome encodes 29 AUX/IAAs with a conserved domain II (DII), which interacts with TIR1 and undergoes poly-ubiquitination and degradation by the 26S proteasome with varying kinetics (Gray et al., 2001; Reed, 2001). Increased DII:VENUS signal in tni is in agreement with the stabilization of multiple AUX/IAAs. However, our study falls short of providing direct evidence that the tni phenotype is mediated by AUX/IAA stabilization. It also does not resolve whether AUX/IAAs in tni are stabilized in the free form or in the poly-ubiquitinated form. It is possible that accumulation of Lys48-linked free poly-ubiquitin chains creates a road-block for protein degradation by the 26S proteasome, as reported in yeast and human (Amerik et al., 1997; Dayal, et al., 2009), leading to an increase in poly-ubiquitinated target proteins. Direct measurement of poly-ubiquitinated AUX/IAAs in wild-type and tni would be required to determine whether they are part of this protein pool.

Since degradation of negative regulators by the ubiquitin-proteasome pathway is a general theme of signaling for several plant hormones, it is likely that the response pathways of other hormones would also be affected in tni. For example, the DELLA proteins that suppress GA signaling are also degraded by the 26S proteasome pathway (Daviere and Archard 2013; Wang and Deng, 2011) and hence are likely to be stabilized in the tni mutant. Whereas this is expected to cause reduced GA response in the mutant, we had earlier noticed an elevated GA-related phenotype in tni, which was rescued by inhibiting GA synthesis (Karidas et al., 2015). It is possible that stabilized DELLA proteins in the mutant suppress GA signaling to an extent that triggers increased GA biosynthesis as a feedback response (Nelson and Steber, 2016). Ubiquitin-dependent degradation of hormone repressors may not be the only mechanism of action for TNI. It has been recently shown that UBP14 interacts with the ULTRAVIOLET-B
INSENSITIVE 4 protein in repressing endoreduplication and organ growth in Arabidopsis (Xu et al., 2016). Interestingly, both GA signalling and low-auxin response promotes entry into the endocycle (Gendreau et al., 1999; Ishida et al., 2010). Thus, the collective phenotypic defects in \textit{tni} could be a cumulative effect of multiple pathways.

CONCLUSIONS

We show that \textit{TNI} encodes the UBP14 enzyme, whose activity is partly compromised in the \textit{tni} mutant since the mutation causes inefficient splicing of the \textit{TNI} transcript. This results in an aberrant protein that lacks catalytic activity, leading to an accumulation of poly-ubiquitin chains and excess poly-ubiquitinated proteins. This is accompanied by widespread auxin-deficient phenotypes and the stabilization of certain AUX/IAA repressors.

MATERIALS AND METHODS

Plant materials

\textit{Arabidopsis thaliana} ecotypes Col-0 and Ler were used as wild-type. The mutant/transgenic lines \textit{DR5::GUS} (Ulmasov et al., 1997), \textit{DR5::nYFP} (Mähäuser et al., 2015), \textit{IAA2::GUS} (Marchant, et al., 2002), \textit{HS::AXR3-NT::GUS} (N9571), \textit{HS::axr3-1-NT::GUS} (N9572) (Gray et al., 2001), \textit{DII-VENUS} (N799173), \textit{mDII-VENUS} (N959174) (Brunoud et al., 2012), \textit{IAA18:GUS} (Ploense et al., 2009), \textit{arf7-1} (CS24607) (Okushima et al., 2005), \textit{aux1-7} (CS3074) (Swarup et al, 2004), \textit{tir1-1} (CS3798) (Ruegger et al, 1998), and \textit{tn7-6} (CS16079) (Tzafrir et al., 2002) have been reported earlier. Most of these lines were obtained from the Nottingham Arabidopsis Stock Center (NASC, UK) or from Arabidopsis Biological Resource Center (ABRC, USA).

Plant growth conditions and treatments

Seeds were surface sterilized and stratified in darkness for 2 days at 4°C following which they were transferred to the growth chamber and maintained under long-day conditions with 16 h light (120 μmol/m²/s) and 8 h dark, 22°C. For 1-NAA (Sigma, USA) and NPA (Calbiochem, Germany) sensitivity assays, seedlings were grown for 4 days in NAA/NPA-free ½MS medium supplemented with 1% (w/v) sucrose (Sigma, USA) and 0.8% agar (Hi Media, India), transferred to 1-NAA- or NPA-containing MS plates and placed vertically in a growth chamber for an additional 3 (for NAA) or 5 (for NPA) days. Photographs were taken at 7 or 9 days after germination and lateral roots were counted using a differential
interference contrast (DIC) microscope (Olympus, JAPAN). 7-day-old seedlings were treated with MG132 (Sigma, USA) for 16 h in liquid medium containing ½ MS salt.

Gravitropism assay

A gravitropic response assay was performed according to protocol described earlier (Hobbie et al, 2000). Briefly, ½ MS plates containing the seeds were kept vertically in a growth chamber and rotated clockwise by 90° 4 days after germination. ImageJ software (rsbweb.nih.gov/ij/) was used to measure the angle of curvature after 3 days of gravistimulation.

Tissue clearing

Seedlings were kept in 70% (v/v) ethanol for 24 h, incubated in lactic acid for 30 min, and then mounted in lactic acid on a transparent glass slide and observed under a DIC microscope.

Embryo dissection

Fertilized ovules were scooped out from siliques and placed on a glass slide containing Hoyer’s medium (HM) and chloralhydrate:glycerol:water in a 8:1:2 ratio. Images were acquired using a Zeiss Axio Imager M1 microscope with DIC settings (Zeiss, Germany).

Map-based cloning

tni in Col-0 background was crossed to Ler and the F₂ individuals resembling *tni* were selected. Genomic DNA was extracted from the inflorescence of these individuals using Nucleon Phytopure kit (GE HealthCare, USA). Polymorph (www.polymorph.weigelworld.org) and dCAPSFinder (http://helix.wustl.edu/dcaps/dcaps.html) software were used to design CAPS and dCAPS markers (Supplemental Table S1). The *tni* locus was mapped to a 65-kb genomic region with the help of these markers and 509 *tni* mapping individuals. Among 21 genes in this interval, the candidate genes were amplified and cloned into the pGEM-T-Easy vector (Promega, USA), followed by Sanger DNA sequencing.

Generation of constructs and transgenic lines

TNI coding sequence was amplified by PCR from cDNA using primers P1888 and P1889 (Supplemental Table S2). To generate the *TNI* over-expression construct 35S::*TNI*, the
coding sequence was cloned downstream of the 35S CaMV promoter in pCAMBIA1302.

TN\textsubscript{i}\text{intron} of amplicon size 800 bp was amplified from tni cDNA with primers P1888 and P1774 harboring BglII and BsmI restriction sites and cloned into pGEM-T-Easy-TNI to make pGEM-T-Easy-TN\textsubscript{i}\text{intron}. With BglII and BsmI restriction enzymes, the first 414 bp of TNI in 35S::TNI (pCAMBIA1302) was replaced with TN\textsubscript{i}\text{intron} from pGEM-T-Easy-TN\textsubscript{i}\text{intron} to generate 35S::TN\textsubscript{i}\text{intron} (pCAMBIA1302). The 35S promoter in 35S::TN\textsubscript{i}\text{intron} was replaced with RPS5\textsubscript{a} promoter, which was amplified with primers P2230 and P2231 harboring BamHI and BglII sites to obtain RPS5\textsubscript{a}::TN\textsubscript{i}\text{intron}.

Artificial microRNA against TNI was designed as per the protocol described earlier (http://wmd3.weigelworld.org/cgi-bin/webapp.cgi). Briefly, primers P1918, P1919, P1920, and P1921 were used to clone the amiR fragment and subsequently cloned into pGEM-T-Easy vector. Primers P2887 and P2888 were used to amplify amiR-TNI and cloned into pCAMBIA1302. The 35S CaMV promoter of pCAMBIA1302 was replaced with RPS5\textsubscript{a} promoter to generate RPS5\textsubscript{a}::amiR-TNI (amiR-TNI). The RPS5\textsubscript{a} promoter sequence was amplified with P2231 and P2238. For pPLT7::TN\textsubscript{i}\text{intron}, the 35SCaMV promoter was replaced with 1.5-kb pPLT7 in pCAMBIA1302 and pCAMBIA1390 using the primers P2801 and P2802. The CDS of TN\textsubscript{i}\text{intron} was cloned downstream to the pPLT7 in pCAMBIA1302 to make the construct pPLT7::TN\textsubscript{i}\text{intron}. The PLT7::amiR-TNI construct was generated similarly. To make the transcriptional fusion of TNI, 1.9-kb upstream region of TNI locus was amplified using primers P2759 and P2760 and cloned into pDONR221. The promoter sequence was cloned into pMDC162 destination vector to make the pTNI::GUS construct.

Agrobacterium GV3101 was transformed with these constructs by electroporation. Flowering Arabidopsis plants were transformed with Agrobacterium harboring individual constructs through the floral dip method (Clough and Bent, 1998).

TNI CDS was cloned in pGEX-4T-1 using primers P1912 and P1913 with engineered BamH1 and SalI restriction sites respectively to create the pGEX4-T-1-TNI construct. pGEX4T-1-TNI was replaced with TN\textsubscript{i}\text{intron} using ScaI and HindIII restriction enzymes to make the pGEX4T-1-TN\textsubscript{i}\text{intron} construct. TN\textsubscript{i}C317S mutant was generated using Q5 site-directed mutagenesis kit (NEB, USA). pGEM-T-Easy-TNI served as a template for making the site-directed mutant using primers P2346 and P2347. TNI fragment in pGEM-T-Easy-TNI was replaced with TN\textsubscript{i}C317S using BglII and SpeI to create pGEM-T-Easy-TN\textsubscript{i}C317S. From this vector, the TN\textsubscript{i}C317S coding sequence was moved to pGEX4-T-1 using BamH1 and SalI.
restriction enzymes for protein expression. The pGEX-4T-1-TNI was used as the template to generate truncated proteins ZnF, ΔZnF, ΔUBA, ΔUBA2, and UBA domains using primer pairs P1912, P2405; P2403, P1913; P1912, P2549; P1912, P2806; and P2827, P2808 respectively with engineered BamH1 and SalI restriction sites. All these deletion constructs were subsequently cloned into pGEX-4T-1.

Purification of GST-tagged recombinant proteins from E.coli

Recombinant protein expression and purification was done according to the protocol previously described (Harper and Speicher, 2011) with some modifications. Briefly, transformed E.coli(BL21) cells were induced with 0.5 mM IPTG (Sigma, USA) at mid-log phase, incubated at 16°C for 12 h, harvested by centrifugation at 4000g for 5 min at 4°C, and suspended in lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM KCl, 0.5 mM EDTA, 10% (v/v) glycerol, 0.5% (v/v) NP-40, 1 mM PMSF and protease inhibitor cocktail) followed by sonication until it turned clear. Clear supernatant was collected after centrifugation at 12,000g for 20 min at 4°C and incubated with glutathione beads (Novagen, USA) for 2 h at 4°C with constant shaking. Beads were washed five times with ice-cold cell suspension buffer, and bound protein eluted with 2 mM glutathione. SDS-PAGE was used to analyse the proteins.

In vitro and in vivo de-ubiquitination assay

De-ubiquitination assays were performed as described earlier (Rao-Naik et al., 2000). Briefly, a 50-μl assay reaction comprising purified protein, 50 mM Tris-HCL pH 8, 150 mM NaCl, 10 mM β-mercaptoethanol, 0.5 mg/ml BSA, and 2μg 2–7-mer of poly-ubiquitin (Boston Biochemical, USA) was incubated at 37°C for 3 h. Laemlli buffer (200mMTris-HCl pH-6.8, 10% (w/v) SDS, 30% (v/v)glycerol 0.05% (v/v) bromophenol blue, and β-mercaptoethanol) was added to stop the reaction. Assay mixture was fractionated by SDS-PAGE and immunoblot analysis was performed using anti-ubiquitin antibody (Novus Biologicals, USA). For in vivo assays, E.coli was co-transformed with constructs along with the p8190-UBQ10 and pACYC184-Ub4 constructs (Rao-Naik et al., 2000), induced with 0.5 mM IPTG, and incubated for 3 h at 37°C. Equal cell aliquots were pelleted down, suspended into lysis buffer, and sonicated until clear. Supernatant was boiled in Laemlli buffer and analysed by SDS-PAGE. Immunoblotting was done using anti-ubiquitin and anti-His antibodies (Sigma, USA).

In vitro substrate binding assay
GST-tagged recombinant proteins were purified using glutathione sepharose beads as mentioned in the previous section. 5–50 μl bead-bound protein was incubated with 1μg Lys48-linked tetra-ubiquitin (Boston Biochemicals, USA) in sodium phosphate, pH 7.4 in the presence of a protease inhibitor cocktail (Roche, Germany). The reaction mixture was incubated at 4°C for 2 h with shaking, then stopped by the addition of Laemlli buffer and boiling the sample for 10 min. The reaction mixture was fractionated by SDS-PAGE and immunoblotting was performed using anti-ubiquitin antibody.

GUS staining and MUG assay

GUS staining was performed as described earlier (Karidas et al., 2015). Seedlings were harvested in ice-cold 90% (v/v) acetone, incubated on ice for 20 min, and then in staining buffer (0.5 M sodium phosphate buffer pH 7.2, 10% (v/v) Triton-X, 100 mM potassium ferrocyanide, and 100 mM potassium ferricyanide) for 20 min at 25°C. 2 mM X-Gluc (Thermo Scientific, USA) was added to the fresh staining buffer containing seedlings and incubated at 37°C for up to 12 h, followed by washing with 70% (v/v) ethanol for 30–60 min at 25°C until chlorophyll was removed, mounting on a glass slide in lactic acid, and observations under DIC microscopy.

MUG assays were performed according to the previously described protocol (Weigel and Glazebrook, 2002). Briefly, protein was extracted from seedlings using extraction buffer (50 mM sodium phosphate pH 7.0, 10 mM EDTA, 0.1% (w/v) SDS, 0.1% (v/v) TritonX-100, 1 mM PMSF, and protease inhibitor cocktail), centrifuged at 12,000g at 4°C for 15 min after which clear supernatant was collected and equal concentration of proteins was taken for the MUG assay. The MUG assay buffer composition is that of the extraction buffer supplemented with 1 mM MUG (Sigma, USA). Reactions were incubated at 37°C for 20 min and stopped using 0.2 M sodium carbonate. A TECAN fluorimeter was used to measure the fluorescence at 365nm excitation and 455nm emission wavelengths.

Antibody generation

Anti-TNI polyclonal antibody was raised against a synthetic peptide (USV Ltd, India) corresponding to residues 156–174 of TNI/UBP14, which was identified as a potent immunogen using the software available at http://tools.iedb.org/main/bcell/. 5 mg synthetic peptide with >85% purity was conjugated to Keyhole limpet haemocyanin carrier. Rabbits
were immunized with 1mg conjugated peptide, followed by 3 booster immunization each
with500 µg conjugated peptide. Post immunization anti-serum was collected from the rabbits.

Immunoblot analysis

Proteins were isolated from 7–8-day-old seedlings using protein extraction buffer (50 mM
Tris-HCl pH 7.4, 300 mM KCl, 0.5 mM EDTA, 10% (v/v) glycerol, 0.5% (v/v) NP-40) along
with 1 mM PMSF, 50μM MG132, and complete protease inhibitor cocktail (Roche, Germany). Extract was cleared by centrifugation at 12,000g for 15 min at 4°C. Equal
concentrations of protein were analysed in 15% or 10% (v/v) SDS-PAGE, transferred to
PVDF membranes (Millipore, USA), and immunoblotted using anti-GFP (Roche, Germany),
anti-ubiquitin, anti-Lys48 ubiquitin (CST, USA), and anti-Lys63 (Enzo Life sciences, USA)
antibodies. ECl (Millipore, USA) was used to develop the blots.

Confocal microscopy

Roots were stained with 10μg/mL propidium iodide (Sigma, USA) for 5 min, mounted on a
glass slide, and observed under a laser confocal microscope (Zeiss LSM 710, Germany).

RNA isolation and cDNA synthesis

Total RNA was extracted from 7-day-old seedlings using Trizol (Sigma, USA), treated with
DNase (Fermentus, USA) for 2 h at 37°C, and precipitated by sodium acetate. 2μg RNA was
used as template for cDNA preparation using Revert Aid M-MuLV reverse transcriptase
(Fermentus, USA). 20-μl reverse transcription reactions were set up and the amplified
products were visualized using ethidium bromide staining of 1% (w/v) agarose gels.

ACCESSION NUMBERS

The accession numbers of the genes mentioned in this article are given below and their
sequence data can be found in Arabidopsis genome initiative (www.arabidopsis.org): IAA2
(At3G23030), AXR3(At1G04250), IAA18 (At1G51950), ARF7 (At5G20730), AUX1
(At2G38120), TIR1 (At3G62980), PIN1 (At1G73590), and TTN6 (At3G20630).

SUPPLEMENTAL DATA

Supplemental Figure S1. Pro-embryo and cotyledon phenotype in tni.
Supplemental Figure S2. Differentially expressed auxin-related genes in tni.

Supplemental Figure S3. Cloning of the tni locus.

Supplemental Figure S4. Tissue specific expression of TNI promoter.

Supplemental Figure S5. Effects of TNI mis-expression on lateral roots.

Supplemental Figure S6. TNI intron is catalytically inactive.

Supplemental Figure S7. Accumulation of poly-ubiquitinated proteins in tni mutant.

Supplemental Figure S8. In vitro disassembly of ubiquitin conjugates from tni plant extract.

Supplemental Figure S9. Expression of recombinant TNI protein in E. coli.

Supplemental Figure S10. PIN1::GUS reporter assay in tni.

Supplemental Table S1. List of markers used for fine mapping of TNI locus along with their nature and positions in the genome.

Supplemental Table S2. List of primers used for generating constructs.

ACKNOWLEDGEMENTS

We acknowledge B. Vijaya Lakshmi Vadde (Indian Institute of Science, India) for anti-TNI antibody, M. Sowmya Spandana (Indian Institute of Science, India) for help in making clones, Jason Reed (University of North Carolina, US) for IAA18:GUS, Judy Callis (University of California, US) for ScUBP14, Ub6 and His-Ub4 constructs, Ben Scheres (Wageningen University, Netherlands) for DR5::GUS and DR5::nYFP lines, Kalika Prasad (IISER Thiruvananthapuram, India) for pPLT7 construct and P. Ajit Kumar (Indian Institute of Science, India) for access to Zeiss microscope.

Figure 1. Auxin-related phenotypes in tni. (A) 2-cell pro-embryo. Arrows highlight vertical (Col-0) or horizontal (tni) cell division. (B) 1-cell pro-embryo. Arrow indicates periclinal cell division defect in the tni basal cell. (C) Globular stage embryo. Normal (Col-0) and aberrant (tni) lens-shaped cells are magnified in the insets. Scale bar (in A-C), 10μm. (D) Normal (Col-0) and rootless (tni) seedlings. Scale bar, 1mm. The image was digitally extracted to
remove the background. (E) 7-day-old seedlings with two (Col-0) or three (tni) cotyledons. Scale bar, 1mm. The photograph is taken in a black background. (F) Heart stage embryo with two (Col-0) or three (tni) cotyledon primordial (marked by dotted line). Col-0 meristem is falsely colored in yellow. Scale bar, 10μm. (G) Cotyledons from 7-day-old seedlings are cleared to highlight veins. Open venation in tni is marked by arrows. Scale bar, 1 mm. (H) Percentage of cotyledons (n= 103 in Col-0 and 90 in tni) showing closed or open veins. (I) Effect of gravistimulation on primary roots of 7-day-old seedlings. Angles of root bending are indicated by red lines. Scale bar, 5 mm. (J) Average angle of curvature (n= 52 for Col-0 and 43 for tni) of primary roots following gravistimulation shown in (I). Error bars represent SD. *** denotes p<0.0001 (unpaired Student’s t-test was used). (K) 11-day-old seedlings. Scale bar, 5 mm. (L) Average number of lateral roots (n= 10–13) in seedlings at indicated days after germination (DAG). Error bars represent SD. *** denotes p<0.0001 (unpaired Student’s t-test). (M) Open flowers showing variation in petal number in tni mutant. The image was digitally extracted to remove the background. (N) Matured seeds. Scale bar, 1 mm. (O) Average seed area (n= 15). Error bars represent SD. *** denotes p<0.0001 (unpaired Student’s t-test).

Figure 2. Auxin response in tni. (A-D) DR5::GUS activity in the cotyledons (A), first leaf pair (B), primary root tips (C), and lateral root tips (D) of 3-(A) and 7-day-old (B-D) DR5::GUS (Col-0) and DR5::GUS tni (tni) seedlings. Scale bar, 200μm (A, B) and 100μm (C, D). (E and F) DR5::nYFP signal at the tips of cotyledons of 5-day-old seedlings (E) and primary roots (F) of 7–8-day-old DR5::nYFP (Col-0) and DR5::nYFP tni (tni) seedlings. Scale bar, 50μm (E, F). Root samples were stained with propidium iodide in (F). (G) Western blots of the total proteins from 7-day-old DR5::nYFP (Col-0) and DR5::nYFP tni (tni) seedlings. α-β-ACTIN (α-β-ACT) was used as a control. (H) β-glucuronidase activity estimated in total extracts of DR5::GUS (Col-0) and DR5::nYFP tni (tni) seedlings. Averages of three biological replicates are shown. Error bars represent SD. * indicates p=0.0406 (unpaired Student’s t-test). (I-K) IAA2::GUS activity in the cotyledons (I), first leaf pairs (J) and primary roots (K) of 7-day-old IAA2::GUS (Col-0) and IAA2::GUS tni (tni) seedlings. Arrows in (I) indicate IAA2::GUS activity at cotyledon tips. Scale bar, 200μm (I, J) and 100μm (K).

Figure 3. Auxin sensitivity of tni mutant. (A and B) Average number of lateral roots of 7-day-old seedlings grown in the presence of 1-naphthaleneacetic acid (NAA) (A) and their relative increases (B). Error bars represent SD. Statistical analysis was done using unpaired
Student’s t-test. *** denotes p≤0.0001. ns, not significant. (C and D) Average number of lateral roots in 9-day-old seedlings treated with N-1-naphthylphthalamic acid (NPA) and their relative decreases (D). For (A and C), n= 12–15; error bars represent SD; *** and * denote p≤0.0001 and <0.006, respectively (unpaired Student’s t-test); ns, not significant.

Figure 4. Genetic interaction between tni and mutants with auxin-related defects. (A-C) Average number of lateral roots (n= 10–15) of 9-day-old seedlings. Error bars represent SD. *** denotes p<0.0001, ** denotes p= 0.0084 (unpaired Student’s t-test), ns, not significant.

Figure 5. Cloning of TNI. (A) A schematic representation of TNI/UBP14 locus showing 5′ UTR (black box), exons (grey box), introns (black line), and 3′ UTR (white box). Positions of T-DNA insertion in various mutant alleles are shown by inverted triangles. The G→A transition at the third intron-exon junction in tni allele and G→T substitution at the nineteenth exon-intron junction in the da3-1 allele are indicated. (B-F) 30-day-old rosettes of wild-type (B), tni (C), tni x ttn6-4 (+/-) F1 plants (D), tni plants over-expressing TNI transcript (E), and Col-0 plant expressing artificial microRNA (amiR) against TNI transcript (F). Red arrows indicate leaf curvature. Scale bar, 0.5 cm. The rosette images in (B-F) were digitally extracted to remove the background. (G) Schematic representations of the predicted wild-type TNI and the mutant TNI^{intron} transcripts. Note the retention of the 3rd intron (solid line) in TNI^{intron}. Arrows indicate the position of the primers used for RT-PCR analysis. Dotted lines indicate continuity of exons. (H) Domain architecture of TNI and TNI^{intron} proteins. Orange box indicates a 34-amino acid-residue insertion encoded by the 3rd intron. (I) Ethidium bromide-stained agarose gel showing the products of RT-PCR on total RNA from Col-0 (WT), mature tni leaves (tni L) and tni inflorescence (tni I). + and - indicate cDNA and RNA as PCR templates. M, DNA marker. (J) Western blot of total protein extracted from 7-day-old seedlings using antibody raised against a peptide corresponding to residues 156–174 of TNI. α-β-ACTIN (α-β-ACT) was used as loading control.

Figure 6. Linkage specificity and ubiquitin binding by TNI. (A and B) Western blots of total proteins extracted from 7-day-old seedlings probed with anti-ubiquitin antibody specific to Lys48 (α-Lys48) (A) or Lys63 (α-Lys63) (B) linkage. Bracket and * in (A) indicate smear of Lys48 linked poly-ubiquitinated proteins and α-β-ACTIN (α-β-ACT) served as loading control. (C-E) Anti-ubiquitin (α-Ub) Western blots of Lys48-linked tetra-ubiquitin substrate incubated with recombinant, GST-tagged full-length (TNI, TNI^{intron}, and TNI^{C317S} in C and D), and truncated (ZnF, ΔZnF, ΔUBA, ΔUBA2, UBA, and ZnF-TNI^{intron} in D and E) forms
of TNI protein immobilized on glutathione beads. Lys48-linked tetra-ubiquitin substrate alone (Input) and recombinant GST protein served as positive and negative controls, respectively. Arrow in (C) indicates mono-ubiquitin product. Ponceau-stained membranes shown below served as loading control wherein asterisks denote the recombinant proteins used for the assays.

Figure 7. Stabilization of AUX/IAAs in tni. (A) DII:VENUS signal in the primary roots of 7-day-old Col-0 (*DII:VENUS* and *mDII:VENUS*) and *tni* (*DII:VENUS tni*) seedlings. Strong signal of *mDII:VENUS*, a non-degradable version of DII domain served as a positive control. Scale bar, 50μm. (B) Anti-GFP Western blot of total protein extracts from 7-day-old Col-0 (*DII:VENUS* and *mDII:VENUS*) and *tni* (*DII:VENUS tni*) seedlings. α-β-ACTIN (α-β-ACT) served as internal control. Numbers indicate molecular-weight markers. (C) GUS activity in the cotyledons of 7-day-old seedlings after increasing durations of heat shock. The non-degradable form *axr3-1-NT* in the middle panel served as a positive control. NT denotes N-terminal domain. Scale bar, 200μm. (D-F) IAA18:GUS signal in cotyledon vein (D), lateral root (E), and primary root (F) of *IAA18:GUS* (Ler) and *IAA18:GUS tni* seedlings. Scale bar, 200μm (D) and 100μm (E-F). (G) β-glucuronidase activity in *IAA18:GUS* (Ler) and *IAA18:GUS tni* (tni) seedlings. Averages of triplicate biological replicates are shown. Error bars represent SD. *** denotes p<0.0001 (unpaired Student’s *t*-test).

